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Abstract
The non-self-adjointness of the radial momentum operator has been noted
before by several authors, but the various proofs are incorrect. We give a
rigorous proof that the n-dimensional radial momentum operator is not self-
adjoint and has no self-adjoint extensions. The main idea of the proof is to
show that this operator is unitarily equivalent to the momentum operator on
L2[(0,∞), dr] which is not self-adjoint and has no self-adjoint extensions.

PACS numbers: 03.65.−w, 02.30.Tb, 03.65.Ta

1. Introduction

The radial momentum operator has been the subject of long discussions since the early days
of quantum mechanics. Its exact form and relation to the Hamiltonian were considered by
many authors [1–4]. Unlike the classical radial momentum, the connection between the radial
momentum operator and the Hamiltonian of a free particle is not trivial [5, 6]. In fact, the
connection between the radial momentum and the Hamiltonian in n dimensions is [6]

Ĥ = P̂ 2
r

2m
+

L̂2

2mr2
+
h̄2

2m

(n− 1)(n− 3)

4r2
.

(At least formally, in principle one has to define the self-adjoint extension of P̂ 2
r [7, 8], which

is not self-adjoint.)
Another important question that was raised is whether the radial momentum operator is an

observable. Although Dirac claimed in The Principles of Quantum Mechanics that the radial
momentum operator is ‘real’ [2], many authors realized that the radial momentum operator is
not self-adjoint [4, 9–11]. Unfortunately none of these proofs is correct.

In order to be an observable the radial momentum operator should be self-adjoint. Simply
checking that the eigenvalues are real (as [4, 9] do) is not sufficient (or necessary); one has to
pay attention to the domain on which the operator is defined. Perhaps the most appealing (but
incorrect) argument appears in [10, 11] (we use units where h̄ = 1):
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‘Since [r̂ , P̂r ] = i the unitary transformation e−iaP̂r shifts the operator r̂ by a (because
eiaP̂r r̂e−iaP̂r = r̂ + a) while leaving its spectrum invariant (being a unitary transformation).
Therefore the spectrum of r̂ must be (−∞,∞). Since the spectrum of r̂ is (0,∞) the operator
P̂r cannot be self-adjoint’.

This statement, had it been true, would have prevented any operator which has canonical
commutation relation with r̂ from being self-adjoint. Unfortunately, this statement cannot be
true as we can see from the following counter-example. Consider the space L2[(0, 1), dx]; the
momentum operator P̂ = −id/dx with a suitable domain is self-adjoint in this space [7]. The
position operator X̂ is a bounded self-adjoint operator. Its spectrum is of course (0, 1) and
we have for a suitable subspace of L2[(0, 1), dx] (say, the infinitely differentiable functions
whose compact support is in (0, 1)) [X̂, P̂ ] = i. Following the logic of the above statement
we would have concluded that P̂ is not self-adjoint. Therefore, from this simple example, we
see that the above statement cannot be correct.

Nevertheless the operator e−iaP̂r should correspond to the translation operator on
L2[(0,∞), rn−1dr]. This operator is at least an isometry so it should be of the form

e−iaP̂rψ(r) =
{
ψ(r − a) if a � r

0 if 0 < r < a.
(1)

Such an operator would not be unitary: if ψ(r) �= 0 for r < a then the action of eiP̂r a on ψ(r)
is not defined. Stated differently, ‘we can move everything to the right but not to the left’.
Since the translation operator is not unitary we have every reason to suspect that P̂r is not
self-adjoint. Therefore, it seems that a correct proof of the non-self-adjointness of the radial
momentum operator is highly in order.

There seems to be almost a consensus in the literature that the operator which correspond
to the radial momentum in n dimensions is the operator −i

(
∂/∂r + (n−1)/2r

)
[3,5]. We shall

now show that this operator is not self-adjoint and has no self-adjoint extensions.

2. The proof

It is well known that the momentum operator in L2[(0,∞), dr] is not self-adjoint and has no
self-adjoint extensions [12]. When we say the ‘momentum operator’ we mean the operator
P̂ = −id/dr with the domain

{ψ |ψ ∈ L2, ψ ′ ∈ L2, ψ is absolutely continuous on (0,∞), ψ(0) = 0}.
These conditions are needed to assure that P̂ would be symmetric (notice that since ψ is
absolutely continuous limr→∞ ψ = 0 [12]). We are going to use this fact to prove our
assertion.

First, define a transformation:

U : L2[(0,∞), dr] → L2[(0,∞), rn−1dr]

(Uψ)(r) := ψ

r(n−1)/2
.

(2)

We have

‖ψ‖2 =
∫ ∞

0
|ψ |2dr =

∫ ∞

0

∣∣∣∣ ψ

r(n−1)/2

∣∣∣∣
2

rn−1dr = ‖Uψ‖2, (3)

so U is an isometry. U is a unitary operator since every ϕ ∈ L2[(0,∞), rn−1dr] has an
inverse image r(n−1)/2ϕ ∈ L2[(0,∞), dr]. This transformation (with n = 3) is well known
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from elementary textbooks on quantum mechanics, where it is used to solve the Schrödinger
equation for the hydrogen atom [13].

U−1 is defined by

U−1 : L2[(0,∞), rn−1dr] → L2[(0,∞), dr]
(U−1ϕ)(r) := r(n−1)/2ϕ.

(4)

The operator P̂ on L2[(0,∞), dr] is unitarily equivalent to

P̂r
def= UP̂U−1 = r(1−n)/2

(
−i

d

dr

)
r(n−1)/2 = −i

(
d

dr
+
n− 1

2r

)
, (5)

which is, formally, the n-dimensional radial momentum operator.
If ϕ ∈ D(P̂r) then U−1ϕ ∈ D(P̂ ). Therefore if ϕ ∈ D(P̂r) then

(a) (r(n−1)/2ϕ)′ ∈ L2[(0,∞), dr]

(b) r(n−1)/2ϕ is absolutely continuous in (0,∞)

(c) (r(n−1)/2ϕ)(0) = 0.

The obvious question arises: is this the ‘natural’ domain for P̂r?
First of all, P̂rϕ ∈ L2[(0,∞), rn−1dr], that is∫ ∞

0
|P̂rϕ|2rn−1dr =

∫ ∞

0

∣∣∣∣ d

dr
r(n−1)/2ϕ

∣∣∣∣
2

(r(1−n)/2)2rn−1dr ⇒ (r(n−1)/2ϕ)′ ∈ L2[(0,∞), dr],(6)

and we have (a).
P̂r is (at least) symmetric, that is if ϕ, χ ∈ D(P̂r) then the following equality should hold:∫ ∞

0
χ(P̂rϕ)r

n−1 dr =
∫ ∞

0
(P̂rχ)ϕr

n−1 dr. (7)

However,∫ ∞

0
χ(P̂rϕ)r

n−1 dr = (−i)
∫ ∞

0
χr(1−n)/2 d

dr
(r(n−1)/2ϕ)rn−1 dr

= (−i)
∫ ∞

0
(r(n−1)/2χ)

d

dr
(r(n−1)/2ϕ) dr

= (−i)(r(n−1)/2χ)r(n−1)/2ϕ |∞0 +i
∫ ∞

0

d

dr
(r(n−1)/2χ)r(n−1)/2ϕ dr

= (−i)(r(n−1)/2χ)r(n−1)/2ϕ |∞0 +
∫ ∞

0
(P̂rχ)ϕr

n−1 dr, (8)

where we were forced to assume (b) in order to use integration by parts. (b) also ensures that
the boundary term in (8) is zero at infinity. In order that (7) will hold, we have to assume that
the boundary term also vanishes at the origin, i.e. assume (c).

Thus we have defined P̂r with its proper domain and we see that it is symmetric.
Furthermore it is also closed since it is unitarily equivalent to P̂ , which is closed [12]. As we
have said earlier this operator is the radial momentum operator.

In order to find out whether this operator is self-adjoint or at least has self-adjoint
extensions we have to check the dimensionality of the two subspaces: K− = ker (i + P̂ ∗

r )

and K+ = ker (i − P̂ ∗
r ). If they do not have the same dimensionality the operator is not

self-adjoint and has no self-adjoint extensions [7].
P̂ ∗
r is easy to find since [12] P̂ ∗

r = UP̂ ∗U−1 and we have

ϕ ∈ ker (i ± P̂ ∗
r ) ⇒ (i ± P̂ ∗

r )ϕ = 0 ⇒ (i ± UP̂ ∗U−1)ϕ = 0 ⇒ U(i ± P̂ ∗)U−1ϕ = 0

⇒ (i ± P̂ ∗)U−1ϕ = 0 ⇒ U−1ϕ ∈ ker (i ± P̂ ∗). (9)
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In a similar way we can show that

ψ ∈ ker (i ± P̂ ∗) ⇒ Uψ ∈ ker (i ± P̂ ∗
r ) (10)

and we conclude that

dim ker (i ± P̂ ∗
r ) = dim ker (i ± P̂ ∗). (11)

P̂ ∗ has the following property [12]:

dim ker (i + P̂ ∗) = 0

dim ker (i − P̂ ∗) = 1,
(12)

because

ker (i + P̂ ∗) = {cer |c ∈ C} �⊆ L2[(0,∞), dr]

ker (i − P̂ ∗) = {ce−r |c ∈ C} ⊆ L2[(0,∞), dr].
(13)

Therefore

dim ker (i + P̂ ∗
r ) �= dim ker (i − P̂ ∗

r ) (14)

and P̂r is not self-adjoint and does not have self-adjoint extensions.
Using this equivalence we can understand the non-self-adjoint nature of the radial

momentum operator on a more intuitive level, by transferring the problem into a one-
dimensional problem.

In one dimension we can, in general, consider three types of interval: infinite interval,
finite interval (‘particle in a box’) and semi-infinite interval. In the first case the momentum
operator is self-adjoint because we can translate a wavepacket to both sides. In the case of
a ‘particle in a box’ we can translate a wavepacket and whatever ‘comes out’ at one end we
can enter at the other end (possibly with a different phase which corresponds to a specific
self-adjoint extension [7]). Therefore the momentum operator, which is not self-adjoint, has
self-adjoint extensions. In the case of a semi-infinite interval, we can move a wavepacket to
the right but if we try to move it to the left what ‘comes out’ at the origin cannot be entered at
the other end since the ‘other end’ is infinity. Therefore the translation operator is not unitary
and the momentum operator is not self-adjoint and has no self-adjoint extensions.

To summarize, we have seen that the radial momentum operator is unitarily equivalent to
the momentum operator on the half-line (0,∞). Since this operator is not self-adjoint (and
has no self-adjoint extensions), the radial momentum operator is not self-adjoint (and has no
self-adjoint extensions).
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